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The anisotropic interactions of three polar moleculessCO, HF, and LiHswith He atoms (in their ground
electronic states), obtained from accurate ab initio calculations that explicitly include their vibration-to-
translation coupling terms are analyzed in detail, to compare their relative features. The quantum scattering
calculations of their rotovibrational inelastic cross sections are conducted using a recently proposed multichannel
treatment, the modified variable phase method, that has been implemented by the authors and applied here
to ultralow collision energies. A comparison of the different relaxation efficiencies exhibited by the three
title molecules in releasing their internal vibrational energy during ultracold collisions with4He and3He
buffer gas is performed in detail and specific suggestions for experimental choices are extracted from these
findings.

I. Introduction

There has been very rapidly growing interest recently, both
experimental and theoretical, in the field of cold molecules.1-5

Such a marked growth has been obviously inspired by the
spectacular results that have been achieved in the closely related
area of cold atoms, recognized in the year 2001 with the award
of the Nobel Prize in physics to Cornell, Ketterle, and Wieman
for achieving Bose-Einstein condensation (BEC) in dilute gases
of alkali atoms. Although molecules are a much more difficult
working environment for BEC experiments, it has been clear
from the very beginning that they have much more to offer than
simply providing an extension of the sort of experiments already
performed with atoms, thereby attracting the interest of both
the chemical and physical communities in trying to better
understand the large variety of additional effects that are
encountered on the way to bringing molecules and atom/
molecule mixtures down to very low temperatures and very low
velocities. Several fundamental studies6,7 in which molecules
are employed take advantage of the relative ultralow velocities
between molecules that have been achieved in recent experi-
ments. There are currently three methods that are employed to
produce cold molecules that can be trapped for an acceptable
length of time. One of the most widely used approaches starts
with cold atoms stored in a magneto-optical trap (MOT) and,
through the process of photoassociation (PA), binds two atoms
together.8-11 The ensuing molecules are translationally as cold
as the atoms from which they are produced; however, because
the latter bind together at rather large internuclear distances,
the most favored states of the molecules formed are often high
vibrational states just below their dissociation limit. Using a
variety of laser schemes, the internal energy distributions of
the newly formed molecules can be manipulated to transfer them

to their rotovibrational and electronic ground states. In the
second method, a beam of dipolar molecules is decelerated
during the passage through an array of time-varying inhomo-
geneous electric fields12,13 and then trapped in an electrostatic
storage ring5 or in an electrostatic quadrupole trap.14

Another possibility for cooling molecules is offered by
injecting them in a cold helium buffer,15-17 where they can then
thermalize after a series of multiple collisions. When3He is
used as a buffer gas, the temperature can be as low as 250 mK
and one can still maintain a sufficient buffer gas density to
ensure efficient cooling by frequent collisions. One normally
expects that the target molecules would be in their electronic
and vibrational ground states after the end of the equilibration
process, with only a limited number of rotational states being
populated. It is, therefore, of paramount importance to have
some previous knowledge of the relative sizes and of the
temperature behavior for the corresponding collisionally inelastic
cross sections that are related to a particular molecule injected
in the buffer gas to initiate the cooling step of the process. This
essentially means that, to gather theoretical and, possibly, some
indirect experimental information on the inelastic collisions that
are occurring at ultralow temperatures, previously acquired
reliable information on the anisotropic interactions that drive
the collisional cooling must be available, as well as a compu-
tational tool to treat the quantum dynamics (this tool must be
efficient both numerically and relative to the computer process-
ing unit (CPU)in treating the often-numerous molecular states
that can be involved in the process at hand).

In the present study, we have therefore decided to select three
polar diatomics for which we have been able to obtain, from
previous works,18-20 a fairly reliable description of their full
anisotropic interactions with the He atom. We shall therefore
show below that the generation of numerically converged results
for their collisional de-excitation cross sections at very low
translational energies allows one to obtain a fairly detailed
picture of the cooling efficiency for these three species in the
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chosen buffer gas and also makes it possible to suggest the
environmental parameters that would help to optimize the
working conditions in experiments. In the next section, we
present and discuss the relative features of the three potential
energy surfaces (PESs), whereas in Section III, we give
theoretical and computational details of the method that we have
implemented to solve the quantum coupled equations of the
inelastic dynamics. The present results are displayed and
discussed in Section IV, and our final conclusions and future
plans are reported in Section V.

II. Potential Energy Surfaces

To attempt a comparison of the dynamical behavior of the
three title systems, a short analysis of their PESs is required.
Two of the three PESssCO+ He18 and HF+ He19shave been
calculated using the symmetry-adapted perturbation theory
(SAPT) method, whereas the LiH+ He surface was obtained
instead using the MP2 method with a CCSD(T) correction.20

In Figure 1, we report the energy contours of the lowest adiabatic
coupling element obtained from the PESs, namely, the numerical
results from taking the integral∫0

∞ø0(r)V(r,R,θ)ø0(r) dr that
returns aV00(R,θ) PES. For nonreactive systems, such quan-
tities are very similar to the simpler rigid rotor interaction
V(req,R,θ). In each of the panels, the PES forR < 2.0 Å is not
shown.

Figure 1 clearly shows that the three systems have completely
different interaction profiles: the CO surface (top panel) is

almost isotropic and has a well depth of approximately-20
cm-1; the HF interaction is much less isotropic, showing the
presence of two similar wells of approximately-35 cm-1 at
0° and 90°; the LiH-He surface (bottom panel), on the other
hand, is very anisotropic. This is partly due to the large mass
difference between lithium and hydrogen that places the LiH
center-of-mass very close to the Li atom, and partly because
the LiH electronic structure resembles a Li+H- ion-pair state
with a very anisotropic electron density distribution. The
potential well is also much deeper here and reaches-180 cm-1

on the Li side of the target.
We are interested in analyzing the vibrational relaxation cross

sections at ultralow energies; therefore, in Figure 2, we report
the corresponding contour levels for the modulus of the first
off-diagonal element|V01|. In all the panels, the coupling is not
shown for values ofR< 2.0 Å. This scenario gives a qualitative
idea of the strength of the vibrational coupling that acts during
the collision: in CO, the vibrational coupling is small and
appreciable only at very short range; on the other hand, it is
stronger in HF and extends to larger distances; in the LiH-He
system, the vibrational-to-translational coupling is rather strong,
acts over a wide range of distances, and is markedly localized
on the lithium side.

The features of the PESs that we briefly analyzed previously
are confirmed by the well-known dynamical behavior of these

Figure 1. Energy contours for theV00 diagonal elements of the
interaction potentials in cylindrical coordinates (the origin is located
in the center of mass of the molecule) for the three systems considered
here: CO (top), HF (middle), and LiH (bottom). Distances are given
in angstroms and energy levels are given in units of cm-1.

Figure 2. Energy contours of the|V01| off-diagonal elements of the
interaction potentials in cylindrical coordinates (the origin is located
in the center of mass of the molecule) for the three systems considered
here: CO (top), HF (middle), and LiH (bottom). Distances are given
in angstroms. The minimum contour level is located at 0 cm-1, and
each of the contours is plotted every 5 cm-1. Darker areas correspond
to stronger couplings.
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systems, gathered from the large amount of calculations on the
rotovibrational excitation of the target (see Antonova et al.21

for data regarding the CO-He PES and Bodo et al.22 for data
regarding the LiH-He PES) at room temperature and on its
relaxation cross sections.23,24

III. Quantum Dynamics

The time-independent formulation of any close coupling (CC)
approach to quantum inelastic scattering is certainly well-known
and will be not repeated here. Two problems, however, arise
when ultralow collision energies are involved: (i) the large range
of integration of the CC equations that is required and (ii) the
number of steps requested by the integrator, which becomes
very large. An integrator that can adapt its step size at long
range (when the potential usually becomes monotonic and
smooth) is a good choice for this type of problem, although it
would be much better if the same integrator were also able to
reduce the number of channels during the outward propa-
gation. We have recently published an algorithm for the solu-
tion of the CC equation25 that modifies the variable phase
approach26 to solve that problem, specifically addressing the
latter point.

A. Variable Phase Algorithm. The time-independent scat-
tering eigenstates of a system, here denoted asΨi,+, are usually
expanded in terms of diabatic target eigenstates:

where i denotes the (collective) initial states of the colliding
partners and theXf terms are the eigenstates of the isolated
molecules (channel eigenstates). TheFiff terms are the channel
components of the scattering wave function, which must be
determined by solving the Schroedinger equation, subject to the
usual boundary conditions:

wheref denotes a channel that is asymptotically accessible at
the selected energy (open channel) andh(() is a pair of linearly
independent free-particle solutions. Usually, one considers a
single angular momentumJ at the time: whenh(() are chosen
to be the appropriate Riccati-Hankel functions, the coefficients
Sfi are the elements of the partial wave reduced-scattering matrix,
often denoted asSJ. In principle, the sum in eq 1 should span
the relevant discrete spectrum of the isolated molecules and,
whenever possible, also its continuum portion. Usually, however,
numerically converged scattering observables are obtained by
retaining only a limited number of discrete channels. The
number of channels to be included in the expansion of the wave
function is dependent strongly on the system and the collision
energy. However, for a given collision energy, it is also
dependent on the value of the radial scattering coordinate: at
short range, where the interaction is strong, the set of channels
should include at least all the channels that are energetically
accessible when one considers the attractive features of the
potential (a number that can be very large and usually includes
several closed channels). In the asymptotic region, where the
interaction is absent, only open channels are needed. Between
these two extreme situations is a region that can be quite large,
in the case of long-range potentials, in which the closed channels
at higher energies are increasingly less important and, as will
be shown in the following, can be neglected without any loss
of accuracy. The usual coupled equations in the space-fixed (SF)

reference frame of the multichannel scattering problem forM
channels can be expressed as

where [k2] ij ) δij2µ(E - εi) is the diagonal matrix of the
asymptotic (squared) wavevectors, [l2] ij ) δij li(li + 1) the matrix
representation of the square of the orbital angular momentum
operator,g a column vector that holds the radialF’s channel
components of the scattering wave function. The parameterV,
defined asV ) 2µU, represents the potential coupling matrix
whose elements, in the case of atom-vibrating diatom scattering,
are given as

where thefλ terms are the Percival and Seaton coefficients27

and

where the interaction potential has been expanded in Legendre
polynomialsV(R,r,θ) ) ∑λVλ(R,r)Pλ(cosθ). The two coupling
terms with (ν,ν′) ) (0,0) and (ν,ν′) ) (0,1) are those reported
in Figures 1 and 2.

The M, linearly independent solution vectors obtained with
the regular conditiong(0) ) 0 form a matrix solutionΨ; one
usually defines the additional log-derivative matrixY ) Ψ′Ψ-1

(where variables with a prime symbol denote a derivative, with
respect toR), which is invariant for (nonsingular) linear
combinations of the solution vectors and satisfy the well-known
Riccati matrix equation

in whichW ) k2 - V - l2/R2. One solves eq 6 forY, beginning
with the conditionY-1 ) 0, in place of solving eq 3 for the
solution matrixΨ, because, in this way, one avoids the need to
stabilize the wave function against linear dependence of the
solution vectors. The scattering observables are obtained in the
asymptotic region where the log-derivative matrix has a known
form, in terms of free-particle solutions and unknown mixing
coefficients. For example, in the asymptotic region, the solution
matrix can be written in the form

whereJ(R) andN(R) are matrixes of the Riccati-Bessel and
Riccati-Neumann functions.28

TheK matrix defines a set of mixing coefficients of the free-
particle solutions. It is an “augmented” reactance matrix, whose
open-open block holds all the scattering information and is
related to the scattering matrixSby a Caley transformation (see,
for example, Taylor29). Therefore, at the end of the propagation,
one uses the log-derivative matrix to obtain theK matrix by
solving the following linear system:

The Y-to-K transformation given by eq 8 can be used at
eachR to definea K(R) matrix: this matrix is the augmented
K matrix for the potential truncated atR. A differential equation

Ψi,+(R,x) ) ∑
f

Fiff(R)Xf(x) (1)

Fiff(R)fδifh
(-)(R)-Sfih

(+)(R) as (Rf∞) (2)

{ d2

dR2
+ k2 - V - l2

R2}g ) 0 (3)

2µ∑
λ

Vλ(ν′,ν′;R)fλ(j,l,j′,l′,J) (4)

Vλ(ν,ν′;R) ) ∫0

∞
drøν′(r)Vλ(R,r)øν(r) (5)

dY
dR

+ W + Y2 ) 0 (6)

Ψ(R) ) J(R) - N(R)K (7)

(N′ - YN)K ) J′ - YJ (8)
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for K(R) can then be written:

whereΨ ) J - NK. (See Appendix A of ref 25.) This is the
K-matrix variable phase equation, and it is equivalent to eq 6.

Unlike that in the log-derivative formalism, all theK-matrix
elements are not equally important. Clearly, we are mainly
interested in the open-open block of the matrix; in particular,
in the asymptotic region, we areonly interested in that block.
The other blocks of the matrix must be considered only to the
extent to which they influence the open-open block. Having a
clear separation between the physical and virtual spaces, one
may argue that, when the virtual contributions to the physical
space become negligible, the virtual space can then be reduced.
This is the basis of our channel reduction procedure, which we
have described in detail in ref 25.

To solve the ordinary differential equation (ODE) problem,
we choose a fifth-order embedded Runge-Kutta method. In
this way, one obtains a fourth-order solution and an estimate
of the truncation error. If the error is less than a preselected
threshold value,∆ij (for each (i, j) element), its value is used to
increasethe step size for the next step. Therefore, we adopt, in
this way, a variable step-size integration. The channel reduction
procedure is used on the energy shell each time, i.e., on the
closed channels with the same highest wavevectorki. The
contribution of this shell to the open-open block is checked
during the propagation, and when its contribution is small, all
the channels of the shell are eliminated (for details, see ref 25).

B. Ultralow Energy Scattering. The de-excitation collisions
that will be analyzed here are inelastic collisions that occur in
the ultralow kinetic energy regime. In the entrance channel, the
molecule is in a vibrational excited state (ν ) 1 or ν ) 2) and
in its ground rotational state, and the open channels in the limit
of zero initial kinetic energy are all the rotovibrational levels
with E < E(ν, j ) 0). Because the collision is inelastic (the
molecule undergoes a relaxation to a lower energy level), the
elastic phase shift is a complex number and we can define a
complex scattering length as the limiting value ofδν(k)/k when
k f 0, wherek is the initial wavevector associated to the initial
kinetic energy. Expanding the elastic elementSνν′ in powers of
k, we have

so that the knowledge of the elastic element of theS matrix
whenk f 0 allows us to calculate the real (Rν) and imaginary
(âν) portions of the scattering lengthaν.30,31Total inelastic and
elastic cross sections in thek f 0 limit can then be easily
calculated and are given by

where the second expression is just the well-known Wigner’s
threshold law for inelastic collisions. Integration of the second
expression with a Maxwellian distribution of the velocities gives
the limiting constant value for the total quenching rate co-
efficient:

The scattering length can also be used to estimate the position
and width of any resonance that exists in the entrance channel.
The analytically continuedS matrix has a pole at a pointkp

located in the complexk-plane. Both the imaginary and real
portions ofkp can be calculated in terms of the scattering length
contributions and are given by

We can thus obtain the complex energy valueEp of the resulting
S-matrix pole, on one of the two Riemann sheets of the twofold
complex energy plane, using the formula

The real portion of eq 14 gives the energy of the bound (R >
0) or virtual (R < 0) state. We are dealing with an inelastic
collision, because the initially excited molecule may undergo
rotovibrational quenching; therefore, the energy of the bound
or virtual states has an associated width that is given byu(Ep)
) Γ, so that the state becomes metastable and its lifetime isτ
) 1/Γ.30

IV. Vibrational Relaxation Dynamics

The calculations have been performed over a wide range of
collision energies (from 10-7 to 1 cm-1) that includes the
Wigner’s law regime and energies at which the first shape
resonances appear, which is a region that represents a situation
in which the behavior of the cross sections changes completely
from the ultracold regime. The state-to-state rotovibrational cross
sections fromν ) 2 andν ) 1 have been calculated using a
full CC approach and both3He and4He; however, here, we
will limit the discussion only to rotationally summed cross
sections, because the detailed analysis of the large amount of
data is still in progress and will be reported elsewhere. For each
of the systems, a constant step-size log-derivative32 propagation
has been used, up to 10 Å, where the firstR-dependentK matrix
has been calculated. From that point, the outward propagation
was conducted, using the variable phase equations, up toR )
100 Å, for each system. The number of total steps employed is
variable and dependent both on the nature of the system and
on the collision energy; however, for the lowest energies, it was
on the order of 4000. For each system, onlys-wave (total angular
momentum ofJ ) 0) calculation was performed, up to a
collision energy of 10-3 cm-1; for larger energies, all the
necessary values of the total angular momentum were calculated
(6 for CO, 4 for HF and LiH). The number of states employed
in the CC expansion was dependent on the nature of the system
and on the strength of its rotovibrational coupling: for CO, the
first three vibrational states were included andjmax, the
maximum rotational molecular state, was chosen to be 25; for
HF and LiH, five vibrational states were used withjmax ) 20
and 25, respectively. This resulted in a total of 78, 105, and
130 asymptotic coupled channels in each calculation. When
considering the vibrational relaxation fromν ) 1, the highest
closed rotational channels were not employed, thus reducing
the number of channels to 53, 65, and 80, whereas the same
number of coupled vibrational states was retained. Most of the

K′ ) -Ψ†VΨ (9)

Sνν′ = 1 + 2iδν(k) ) 1 - 2ik(Rν - iâν) ) 1 - 2ikaν (10)

σν
el ) 4π|aν|2

σν
in )

4πâν

k
(11)

Rν(T f 0) )
4πpâν

µ
(12)

u (kp) )
Rν

|aν|

R (kp) ) -
âν

|aν|
(13)

Ep )
kp

2

2µ
) -

exp[-i2 arctan(âν/Rν)]

2µ|aν|2
) E - ( i

2)Γ (14)
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closed channels were eliminated during the outward propagation,
because they have some importance only in the stronger
interaction region. For example, for HF(ν ) 2, j ) 0) + 3He at
10-7 cm-1, the number of channels was reduced from 105 atR
) 10 Å to 39 atR ) 24 Å, while retaining an accuracy of 10-5

on the elements of the open-open block of theK matrix.
The s-wave elastic and inelastic cross sections, determined

at 10-7 cm-1, have been used to calculate the real and imaginary
portions of the scattering length using eqs 11. Thes-wave S
matrix was then used to determine the sign ofR. These and the
other quantities described in the previous section are reported
in Table 1. Some of the scattering lengths are determined to be
negative (bold numbers in the table), which means that some
of the interaction potentials are not able to accommodate a true
metastable state near the threshold. Thus, the resulting computed
energiesE are those of a virtual state living on the nonphysical
Riemann sheet of the complex energy plane. At the same time,
the lifetimes of the collision complexes are marked as neg-
ative as it happens in electron-molecule scattering when a
Ramsauer-Townsend effect takes place.33

The results that we find here for the CO+ He system are
similar to those reported by Zhu et al.34 and Balakrishnan et
al.,35 both for the scattering lengths and for the total quenching
rates. The differences probably result from the fact that, here,
we have used simplerj-independent vibrational wavefunctions
to generate the potential coupling elements.

All the quantities reported in Table 1 confirm that the LiH
molecule is, by far, the one with the largest rate coefficient for
the vibrational de-excitation and the one with the shortest

lifetimes. This result indicates that LiH is an ideal candidate
molecule to be vibrationally and rotationally cooled by collision
with a helium buffer gas.

A. Vibrational Relaxation Cross Sections forν ) 1. First,
we report the de-excitation results fromν ) 1. In Figures 3-5,
the elastic and the vibrational quenching cross sections36 are
plotted as a function of the collison energy.

The Wigner’s regime is established at different energies,
depending on the nature of the system. The one for which it
settles at the highest energies is LiH+ 3He, as can be seen
from the left panel of Figure 5. However, for each of the systems
considered here, at a collision energy of 10-4 cm-1, all the
collision properties can be safely assumed to be determined only
by the knowledge of the complex scattering length (i.e.,
following eqs 11). For CO and LiH, shape resonances are clearly
visible at the higher energies sampled by our calculations, and,
in both cases, wave analysis reveals that it is theJ ) 2 total
angular momentum that gives rise to the shape resonance and,
because the initial angular momentum of the molecule is zero,
the resonance is due to a partial wave component with an orbital
angular momentum ofl ) 2. A plot of the various partial wave
contributions to the total cross section for the latter system is
reported in Figure 6. From the same figure, it is clear to see
when the regime of “quantum suppression” of thel * 0
contributions to the total cross section is established: it already
occurs at energies of 10-2 cm-1.

The CO(ν ) 1)-4He and CO(ν ) 1)-3He systems have
already been analyzed in two earlier papers,34,35 where it was
also found that the quenching cross section for He-CO is rather

TABLE 1: Computed Quantities from the s-wave Cross Sections andS Matrix a

system Rν (a.u.) âv (a.u.) E (cm-1) τ (s) Rν (cm3‚s-1)

CO(ν ) 2) + 3He 3.9 7.3× 10-9 -0.40 4.2× 10-4 2.13× 10-19

CO(ν ) 2) + 4He -5.4 5.7× 10-10 -0.17 1.8× 10-2 1.29× 10-20

CO(ν ) 1) + 3He 4.5 4.6× 10-9 -0.31 4.1× 10-3 1.3× 10-19

CO(ν ) 1) + 4He -4.4 2.3× 10-10 -0.24 1.0× 10-1 5.3× 10-21

HF(ν ) 2) + 3He 1.8 8.5× 10-5 -2.0 3.3× 10-9 2.6× 10-15

HF(ν ) 2) + 4He -2.8 2.7× 10-4 -0.62 -5.4× 10-9 6.5× 10-15

HF(ν )1) + 3He 1.7 1.0× 10-5 -2.3 9.3× 10-8 3.1× 10-16

HF(ν )1) + 4He -3.1 3.4× 10-5 -0.51 -2.4× 10-7 8.1× 10-16

LiH(ν ) 2) + 3He 6.1 9.8× 10-2 -0.20 9.9× 10-11 3.6× 10-12

LiH(ν ) 2) + 4He 2.4 4.9× 10-1 -0.95 1.6× 10-12 1.5× 10-11

LiH(ν )1) + 3He 5.8 2.4× 10-3 -0.22 1.4× 10-8 9.0× 10-14

LiH(ν )1) + 4He 1.3 1.2× 10-2 -3.44 4.0× 10-11 3.8× 10-13

a See text for the meanings of the symbols.

Figure 3. Vibrational quenching (right panel) and elastic (left panel) cross section for CO(ν ) 1) + 3He and CO(ν ) 1) + 4He.
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small. This is a reasonable result, given the large mass of the
CO molecule and the small degree of vibrational coupling,
which we have already discussed in Section II. The limiting
values of the rate constants reported in Table 1 and the cross

sections that we find here for CO-He are similar to those
reported in refs 34 and 35.

If we now turn our attention to the HF molecule, we see that
the elastic cross sections obtained with the bosonic helium are
much larger than those with3He, which is a behavior that might
be due to the presence of a virtual state near the threshold, as
indicated by the large and negative value of the scattering length
in Table 1. The corresponding Ramsauer minima can be seen
for energies in the range of 10-2-10-1 cm-1. The two
quenching cross sections differ by the same factor as the elastic
ones, so that the one with4He is only a factor of 3 larger than
that with3He. Moreover, the HF system seems to be free from
shape resonances at the energies considered here.

The LiH case is still different from the other two: here, the
3He elastic cross section is very large, with respect to the
particularly low cross section that comes from the calculation
with 4He. The probable reason for this behavior is related to
the presence of a bound state very near the threshold that should
be much more spatially diffuse in the3He case (given the
appreciable difference in the values of their scattering lengths
shown in Table 1). It is also interesting to note that the LiH+
He collisions exhibit the largest inelastic cross sections here.
In the last column of Table 1, the limiting value of the quenching

Figure 4. Vibrational quenching (right panel) and elastic (left panel) cross section for HF(ν ) 1) + 3He and HF(ν ) 1) + 4He.

Figure 5. Vibrational quenching (right panel) and elastic (left panel) cross section for LiH(ν ) 1) + 3He and LiH(ν ) 1) + 4He.

Figure 6. Partial wave contributions to the total cross section (filled
circles) for LiH(ν ) 1) + 3He.
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rate constants are reported: one can see how the LiH+ He
system shows the largest quenching rate constant, at least when
using the PES employed here. From this viewpoint, therefore,
LiH seems to be the best candidate for undergoing efficient
sympathetic cooling with helium as a buffer gas.

B. Vibrational Relaxation Cross Sections forν ) 2. In
Figures 7-9, we show the computed elastic and inelastic cross
sections that are due to the vibrational quenching collisions from
the second excited vibrational state (ν ) 2) of the three
molecules.

There are now two possible quenching processes during which
the molecule can release its vibrational energy content: a two-
quanta vibrational jump and a single quantum jump. In all three
systems, the∆ν ) 2 jump is less efficient than the single
quantum exchange, as should be expected for van der Waals
systems and from simple energy-gap consideration (for example,
see Gianturco37); however, although the difference is only 2
orders of magnitude for HF, it increases to 4 orders of magnitude
for LiH and even larger for CO. We note that the results reported
here for CO-He differ from those reported by Bodo et al.38 by
a factor of 20 at low energies. The disagreement between the
two sets of results is due to an overestimation of the long-range
portion of the potential done in ref 37. This expected behavior
can be explained in simple terms when considering the relative

strength of theV01 and V02 vibrational coupling elements for
all three systems (for a detailed discussion of this type of effect
in H + H2, see ref 31). When one compares these findings to
those for the collisional de-excitation from theν ) 1 level
previously discussed, one finds that the quenching cross sections
and the corresponding rate constants are, in general, larger in
the presentν ) 2 case, because now the molecule have two
routes to release the internal energy (strictly speaking, many
more relaxation routes exist, because there are several rotational
channels below the initial state that are energetically available)
and also because the vibrational relaxation from higher levels
is more efficient,31,39 as expected from the reduction of the
energy gap when going to excited states (for example, see ref
37).

Although now the molecule has a greater internal energy
content, the elastic cross-section profiles (and, therefore, the
real portion of the scattering length) for the calculations that
start withν ) 2, and those that start withν ) 1 reported in the
previous section, are very similar, both in shape and absolute
magnitude. In each case, theν ) 1 andν ) 2 elastic processes
indeed show the appearance of very similar shape resonances
in the higher-energies regime. As we have mentioned previously,
some of the scattering lengths reported in Table 1 have negative
values (they are shown in boldface type), and, therefore, the

Figure 7. Vibrational quenching (right panel) and elastic (left panel) cross section for CO(ν ) 2) + 3He and CO(ν ) 2) + 4He.

Figure 8. Vibrational quenching (right panel) and elastic (left panel) cross section for HF(ν ) 2) + 3He and HF(ν ) 2) + 4He.
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collisional systems for which this happens also exhibit, in the
elastic cross sections, marked Ramsauer minima that are due
to the vanishing of thes-wave contribution to the total cross
section at energies where that partial wave is still the largest
that contributes to that cross section. Another external or
experimental quality check of the PESs, which we have
employed here, might come first from a possible detection and
measurement of such minima. This point is rather interesting,
because another feature that makes LiH a good candidate for
collisional cooling (at least as it is described by the interaction
employed here) is also the absence of such minima in our
calculations. They, in fact, might make the helium buffer gas
completely “transparent” to molecules at some particular kinetic
energy, thereby reducing the efficiency at which these molecules
thermalize with the chosen buffer gas.

V. Present Conclusions

In this work, we have discussed, in some detail, the
computational behavior of the vibrational relaxation cross
sections, summed over all their final rotational transitions, for
specific diatomic molecules such as CO, HF, and LiH (with
increasing permanent dipole moment) at ultralow collision
energies. These molecules have been considered to relax
collisionally in a buffer gas of either3He or4He atoms, and the
corresponding calculations have been performed using a rigorous
close-coupling approach within a quantum treatment of the
dynamics. The aim of this work was to establish, via a reliable
treatment of the relaxation dynamics, the possible differences
that exist among these three molecules, in terms of the relative
efficiency of collisional cooling within a cold buffer gas as the
one often experimentally proposed and used for this purpose.15-17

Hence, we have endeavored to first describe the interaction
forces between the title systems and the He atom (all being
dominated by fairly weak van der Waals interactions), using
potential energy surfaces (PESs) (that are as accurate as possible)
for which the vibrational coupling terms were also available.18-20

An analysis of the main features of the interaction forces, at
the level of accuracy accessible with the present calculations,
revealed the following:

(1) The variations of polarity when going from C-O to Li-H
reflect themselves rather clearly on the angular dependence
(orientational anisotropy) variations exhibited by the three
systems: only a weak dependence onθ is observed in the case

of CO-He, whereas the dependence becomes markedly stronger
for LiH-He.

(2) The corresponding vibration-to-translation coupling po-
tentials reflected by the behavior of theVνν(θ, R) PESs discussed
in Section II also vary rather markedly when going from CO-
He to LiH-He; in the latter case, in fact, the coupling extends
over a larger range ofR values and shows very strong angular
dependence. The same occurs for the HF-He system (e.g., see
Figure 2, middle panel), whereas the CO-He system shows a
much weaker and short-ranged potential coupling, which also
seems to be dependent very little on the orientational coordinate.

Such specific differences of the forces at play are seen, from
the present calculation, to cause very direct differences in the
corresponding behavior of the vibrational relaxation cross
sections at collision energies down to∼10-7 cm-1 (see Section
IV). First of all, we find that, for all three cases, the Wigner’s
law regime is achieved over the range of considered energies,
producing∆ν ) 1 relaxation cross-section limiting values for
the LiH molecular partner, which are∼2 or 3 orders of
magnitude larger than those in the case of HF and 5 or 6 orders
of magnitude larger than those for the CO molecule. Further-
more, the single quantum (∆ν ) 1) relaxation process fromν
) 2 that have also been analyzed in our calculations indicate
again a very marked dominance of the efficiency shown by LiH
(rates of 10-11-10-12 cm3‚s-1), with respect to those observed
for HF (rates of 10-15-10-16 cm3‚s-1) and even more with
respect to the very weakly coupled CO-He system (rates of
∼10-19 cm3‚s-1). For a simple, semiclassical model of the
vibrational relaxation process in which two distinct regimes
(Bethe-Wigner at low collision energies and Landau-Teller
at high collision energies) are distinguished and discussed, see
the work of Dashevskaya et al.40 However, note that, in that
paper, the molecule is forced to remain in thej ) 0 state. A
more complex angular momentum arrangement in the outgoing
waves might modify the picture in the intermediate energy range.
Therefore, our own findings clearly suggest that the LiH
molecule could indeed provide a much better candidate for its
sympathetic cooling by collisions in a cold buffer gas of helium
than could be achieved with either CO or HF. This is a piece
of information that we expect should play a significant role in
the planning of possible experiments.

Another interesting result from our present calculations is
provided by the features of the scattering length (the real
portion), as obtained from the limiting behavior of the computed

Figure 9. Vibrational quenching (right panel) and elastic (left panel) cross section for LiH(ν ) 2) + 3He and LiH(ν ) 2) + 4He.
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S-matrix elements. The CO-He and HF-He systems indicate
negative values of the real portion of the scattering length for
molecules initially inν ) 1 andν ) 2, whereas such negative
values are absent in the case of the LiH-He system. As a
consequence of this condition, the corresponding elastic cross
sections in the former systems show a marked Ramsauer-type
minimum at energies of 10-1-10-2 cm-1, whereas this mini-
mum is absent in the case of LiH-He. This means that, around
such energy values, the decrease in the cross-section size will
consequently reduce the cooling efficiency of the collision
processes for CO and HF; this reduction will not occur for LiH.
This difference will therefore provide another advantage for the
latter case, making it an even more attractive candidate for
possible experimental studies.

In conclusion, we feel that our present study, although chiefly
a computational study without, as yet, any experimental
verification for its findings, provides however useful indications
on the relative efficiency of collisional cooling rates of vibra-
tionally excited molecules in ultracold gaseous mixtures where
helium is employed as a buffer gas. Our calculations thus are
determined to be capable of selecting one specific molecular
candidate (i.e., the LiH molecule in its ground electronic state)
as a possible choice for performing experimental verifications
of its cooling efficiency.
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